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Abstract

A nonlinear plan dynamic model for cylindrical bearings has been developed, predicting the interaction forces between

the retainers and the rolling elements. Roller–race contacts are analyzed in detail and resulting forces and moments are

determined. An elastohydrodynamic lubrication (EHL) model provides the traction components while a hydrodynamic

formulation is used for the roller–cage interactions. Structural deformations of the rings are included in the geometrical

equations linking the relative displacements between rings. The Newmark type implicit integration technique coupled with

the Newton–Raphson method is used to solve the differential equation system iteratively. Time displacements and theirs

FFT are used to illustrate and elucidate the diversity of the system response.

Computations performed when considering the structural deformations of the rings show a low frequency shift, as

higher harmonics are attenuated while the first are more pronounced. With an unbalanced rotor, the ball pass frequency

(BPF) is modulated with this perturbation leading to an aperiodic response. This is particularly true for the counter-

rotating bearing investigated. Finally, results for different cage materials show a significant influence only on the cage

center location, whereas the inertia moment of the cage is of little impact on the global dynamics behavior.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The dynamical analysis of a rotor system supported by rolling bearings is of prime importance in many
engineering applications. Rotors are often subjected to either stationary radial load or periodic forces due to
unbalanced mass. The nonlinear behavior of rolling bearings should be considered carefully when looking at
the shaft trajectory or the dynamic response of the rotor-bearing system. The numerical simulation of a rolling
bearing submitted to transient loading will improve our understanding of the dynamic response of the whole
system. It is now clear that, when a roller bearing is radially loaded, part of the rollers are unloaded as they
whirl in orbit. It is then interesting to look at the behavior of each roller when it enters and exits the loading
zone. Factors such as the interactions between the cage and the rollers or the irregular traction characteristics
further act on the motion of the bearing elements, leading sometimes to instabilities. Beyond these
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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Nomenclature

A cross-sectional area
CC cage/ring friction torque
CCj roller end/cage pocket flange friction

torque
CE roller end/guiding flange friction torque
CP rolling resisting moment at the roller/ring

contact
d diameter
dm bearing pitch diameter
E moduli of elasticity
EX cage eccentricity
F friction force at the roller/ring contact
Fc roller centrifugal force
FR radial load
FC1 traction force at front roller/pocket
FC2 traction force at rear roller/pocket
FE friction force at the roller end/ring

guiding flange
FOL oleodynamic drag force acting on the

roller
hi EHL lubricant film thickness at roller/

inner ring contact
ho EHL lubricant film thickness at roller/

outer ring contact
H1 lubricant film thickness between the roll-

er and the cage
I area moment of inertia of the cross-

sectional area
Jd bearing diametrical clearance

K stiffness coefficients
L load
m mass
N number of roller
Q normal load at the roller/ring contact
QC normal load at the cage/ring contact

(short journal bearing effect)
QC1 front roller/cage pocket contact
QC2 rear roller/cage pocket contact
r radius
Rr roller radius
VX horizontal linear velocity
VY vertical linear velocity
X horizontal position
Y vertical position
d contact deformation
n Poisson’s ratio
r density
u structural deformation
uc diametral growth
f cage attitude angle
C angular position
o angular speed

Subscripts

i inner ring
o outer ring
c cage
j roller number
R roller
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phenomena, responses of nonlinear systems often show unexpected behavior and are extremely sensitive to
initial conditions, like clearance or excitation by unbalanced rotors.

Until the late 1970s, most of the analytical simulations of rolling-element bearings were restricted to quasi-
static models which consist of a set of nonlinear algebraic equations solved by standard iteration methods.
Walter [1] was the first to develop an analytical model for ball bearing and cage dynamics. Later, Gupta [2,3]
modified and extended this analysis to other types of rolling element bearings, setting the basis of the
well-known computer code ADOREr, which has been used to validate the model presented in this paper.
As a result of the increase in capacities, the number of publications in the field has grown significantly over the
years.

A lot of research has been conducted on three-dimensional modeling [2,4–7], the effects of geometrical
imperfections [8,9] and experimental results [10,11]. More recently, Lee et al. [12] derived a theoretical model
for the coupling-rotor–ball bearing systems with misalignment and showed the whirling orbits’ tendency to
collapse with increasing angular misalignment. Tiwari et al. studied the nonlinear behaviors of a balanced [13]
or unbalanced [14] rotor due to the effect of internal clearance of the ball bearing. Harsha et al. [15] simulated
some dynamic responses for rotors supported by ball bearings, using a 2 dof model with clearance and
waviness. Similar investigations have been conducted with a 5 dof transient dynamic model considering the
centrifugal force and gyroscopic moment of the ball by Changqing et al. [16]. For a rotating system supported
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by bearings, the impact of ball waviness on the resulting sideband frequencies has been investigated by Jang
et al. [17].

This non-exhaustive list of dynamic analysis for rolling-element demonstrates the variety of phenomena that
may affect the vibration behavior of such systems. The present paper contains a two-dimensional roller
bearing dynamic analysis which takes into account some of the forsaken parameters: the effects of unbalanced
rotor forces, cage materials and counter-rotating motions are investigated while also considering the structural
deformations of the inner- and outer-rings.

2. The problem formulation

A schematic diagram of roller bearing is shown in Fig. 1. The elastic deflection at the contact between a
crowned roller and a ring was determined by Palmgren [18]. This local or contact deformation is independent
of the structure deformation.

2.1. Structural deformations

The proposed solution is an extension of the model proposed by Cavallaro et al. model [19]. The global or
structural deformation has two contributions: a uniform centrifugal expansion and the load distribution
among rollers. Both are used to obtain the operating radial clearance, i.e. the difference between the outer and
inner ring radii minus the roller diameter.

The centrifugal expansion affecting both the cage and the rotating ring is given by Hirotoshi et al. [20]:

uci ¼
rO2

4E
ðð1� nÞð3þ nÞðr2i � r2oÞ þ ð1þ nÞð3þ nÞr2o � ð1� n2Þr2i Þri (1)

uco ¼
rO2

4E
ðð1� nÞð3þ nÞðr2i � r2oÞ þ ð1þ nÞð3þ nÞr2i � ð1� n2Þr2oÞro (2)

where uci and uco are the diametral growths at the inner and outer radii, ri and ro, respectively. In the present
model, the centrifugal expansion is included in the diametral clearance Jd .

The ring out-of-roundness uðyÞ produced by a single line contact can be expressed through a Fourier series
as follows:

uðyÞ ¼ L
X1
k¼0

Kk cosðkyÞ (3)

Superposing the effect of N equidistant loads ðLjÞ yields

uðyÞ ¼
XN

j¼1

Lj

X1
k¼0

Kk cosðkðCj � yÞÞ (4)

where each contact load coincides with the roller angular position Cj (cf. Fig. 2).
The stiffness coefficients Kk can be obtained from an analytical solution as the one given by Young [21]:

assuming a single load is applied, the thin ring is balanced by a symmetric tangential shear stress distribution.
Fig. 1. Schematic diagram of a roller bearing.
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Fig. 2. Roller/ring load distribution for a radially loaded bearing.
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Only three stiffness coefficients are then required to obtain the ring deformations:

uðyÞ ¼ LðK0 þ K1 cos yþ K2 cos 2yÞ (5)

Although this formula leads to a good approximation of the shape of the inner ring when subjected to a static
load, it fails completely for a set of equally, or almost identically loaded rollers. This is the case for the outer
ring, for high-speed application, since the rollers are all loaded at least by the centrifugal force.

For a thin ring submitted to N equivalent (Fc) loads, several analytical solutions are available. Yhland’s
formulation is used here (as reported by Wensing [22]). This solution, valid at any point of the ring, takes into
account the flexural and the extensional deformations:

uY ðyÞ ¼
Fc �N � ro

2pE � Ao

þ
F c �N � r3o
pE � Io

X1
q¼1

1

ððqNÞ2 � 1Þ2
cosðqNyÞ (6)

For the complete loading of the outer ring, this yields

uðyÞ ¼
XN

j¼1

ðQoj � F cÞ
X2
n¼0

Kn cosðnðfj � yÞÞ þ uY ðyÞ (7)

2.2. Equations of motion

The roller bearing behavior is described by solving a set of dynamic, equilibrium and geometric nonlinear
equations, including both cage and lubricant effects. The problem is planar, so only pure radial loading is
considered, assuming perfect geometry for the rolling elements and no ring misalignment.

Fig. 3 shows a roller loaded at the roller/race contact (Q), at the front or rear roller/cage pocket contact
(QC1 and QC2, respectively), and submitted to a centrifugal force (Fc). Dry or lubricated traction forces at the
roller/race and roller/pocket (F, FC1 and FC2, respectively) are of primary importance in roller equilibrium.
A resisting torque (CP) due to an asymmetric hydrodynamic pressure field and the oleodynamic drag force
(FOL) are considered. Due to small internal clearances needed for high-speed operation, friction effects at the
roller end/cage pocket (friction torque CC) and roller end/guiding flange (traction force FE and friction torque
CE) are also considered.

In addition to the roller/cage interactions, the contact between the cage and the guiding ring surfaces
introduces a normal load (QC) and a friction torque (CC) linked to the cage attitude angle (f) and eccentricity
(EX), through a short journal bearing model (see Fig. 4).

Finally, the roller/ring reaction forces balance the inner ring. See Cavallaro paper [19] for details on force
models used.

For the roller j, the application of the Newton’s second law yields

mr

dm

2

doj

dt
¼ QC2j �QC1j � FOLþ Fij � Foj þ FEj (8)

Jr

doj

dt
þ

doRj

dt

� �
¼ RRðFC1j þ FC2j � Fij � F ojÞ þ CEj þ CCj þ CPij þ CPoj (9)
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Fig. 4. Loads acting on the cage.

Fig. 3. Loads acting on a roller.
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with

dCj

dt
¼ oj (10)

Similarly, for the cage:

mc
dVX c

dt
¼
XN

j¼1

ððQC2j �QC1jÞ cosCj þ ðFC2j þ FC1jÞ sinCjÞ þ ðQCi þQCoÞ sin w (11)

mc

dVY c

dt
¼
XN

j¼1

ððQC2j �QC1jÞ sinCj þ ðFC2j � FC1jÞ cosCjÞ � ðQCi þQCoÞ cos w (12)

Jc

doc

dt
¼
XN

j¼1

ðQC2j �QC1jÞ
dm

2
� ðFC2j þ FC1jÞRR� CCj

� �
þ CCi � CCo � EX �QCi sin w (13)
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with

dCc

dt
¼ oc;

dX c

dt
¼ VX c;

dY c

dt
¼ VY c (14)

For the inner ring:

mi
dVX i

dt
¼
XN

j¼1

ðQij sinCjÞ � F ur sinðoitÞ (15)

mi

dVY i

dt
¼ �

XN

j¼1

ðQij cosCjÞ þ F R þ Fur cosðoitÞ (16)

where F ur ¼ murEX uro2
i and with

dX i

dt
¼ VX i;

dY i

dt
¼ VY i (17)

One equation is added for each roller:

0 ¼ FC2j � FC1j þQij �Qoj þ F c (18)

where F c ¼ mRdmo2
j =2.

2.3. Geometry considerations

Two geometric relations must be added to describe the relative displacement between the inner and the
outer ring centers (Fig. 5) and the lubricant film thickness between the roller and the cage pocket. The first
relation includes the elastohydrodynamic lubrication (EHL) film thickness at the roller/race contacts h, the
Fig. 5. Relative displacement between the inner and the outer ring centers.

Fig. 6. Lubricant thickness between the roller and the cage.
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contact deformations d, the radial clearance Jd and the structural deformations u:

Jd

2
þ dij þ doj � hij � hoj þ uij þ uoj ¼ Y i cosCj � X i sinCj (19)

The lubricant film between the roller and the cage (Fig. 6) is given by

H1j ¼
dm

2
Ccj � arctan

2Rr

dm

� �
� arctan

X c

EX
cosCcj þ

Y c

EX
sinCcj

Rc

EX
�

X c

EX
sinCcj �

Y c

EX
cosCcj

� ��Cj

0
BB@

1
CCA

0
BB@

1
CCA (20)

where Ccj ¼ Cc þ 2pðj � 1Þ=N.
2.4. Validations

The basic testing of the present code has been performed with ADOREr [3] and with the research model
used by Ghaisas et al. [23]. Fig. 7 shows the correlation coefficients for the radial displacements predicted by
Gupta’s software and our model applied on a perfect roller bearing with radial loading [3, Table 8-3]. High
rate of agreement is achieved for the inner ring trajectories and for the speed range investigated. The cage
behavior still correctly predicted although cage interactions differ somewhat for the two models.
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Fig. 7. Correlation of the radial displacements predicted by the present model and ADOREr.

Table 1

Bearing parameters.

Number of rollers N ¼ 28

Pitch diameter dm ðmmÞ ¼ 144:5
Cage diameter dc ðmm ¼ 140:7
Roller diameter dR ðmmÞ ¼ 12

Inner shaftþ ring thickness (mm) 41

Outer shaftþ ring thickness (mm) 30

Free diameter clearance Jd (mm) ¼ 6E�2

Race and roller material ¼M50

Cage material: M50 or Peek

Cage centering: inner ring

Oil: mobil oil jet II (MIL-L-23699)
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3. Results

The equations of motion are solved using a modified Newmark-b method to investigate
the effects of internal clearance, ring asymmetry and cage material. A large number of revolutions is
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Fig. 11. Campbell diagram for the radial displacement of the inner ring—flexible rings.

Fig. 10. Campbell diagram for the radial displacement of the inner ring—rigid rings.

time
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ad

rigid rings
flexible rings

Fig. 9. Roller load shape.
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computed to ensure a steady-state response. The displacement and velocity of the bearing elements
are recorded at each time step. The characteristics of the roller bearing investigated are given in
Table 1.
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3.1. Initial conditions

For nonlinear systems, different initial conditions lead to different behaviors and solutions. The
choice of time step dt is a key point: it should be small enough to get an accurate numerical solution
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but large enough to avoid significant truncation errors and keep the computational solution reasonable.
Here, dt is set to 5–10ms and at time t ¼ 0, the initial bearing parameters are those given by the quasi-static
equilibrium.
3.2. Flexible rings

Fig. 8 shows the rotor mass center for rigid (left) or flexible (right) rings. As the average speed of
a roller around the outer race is equal to cage speed oc, the rotor is excited at the frequency of Noc, known
as ‘‘ball’’ pass frequency (BPF). Here the BPF is equal to 960Hz. For the rigid ring case, the applied
radial load is supported by a few rollers located in a narrow angular region, depending only on the elastic
deflection at the roller/raceway contact. These peak-shaped load profiles induce the strong second harmonic
of BPF for the horizontal displacement. For the vertical displacement, a third harmonic contributes to the
response. This frequency is directly linked to the short loading period of the rollers. With the flexible
rings, higher harmonics disappear as the load period increases while the contact pressure distribution is
flattened (cf. Fig. 9).
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3.3. Stability analysis

In Fig. 8, a band of low frequency is visible in each of the displacement responses. It can be suspected at first
to be the result of numerical errors. To dispel these errors and to find any critical values leading to dramatic
bearing behavior, a stability analysis is performed. In Figs. 10 and 11 the Campbell diagrams are shown
for the radial displacements of the inner ring of Fig. 8 for rotating speed from 1000 to 20,000 rev/min with
100 rev/min step.

Aside the BPF harmonics found previously, two instability rotating speeds areas are found in the
investigated range. For the rigid case shows in the Fig. 10, the first instability area is around 7 krev/min and
the second around 14 krev/min. A radial mode is also slightly apparent at 3 kHz while the lower band of
frequencies contains several harmonics linked to the cage (f cage), roller (f roller) and inner ring (f IR) frequencies.
The flexibility of the rings (Fig. 11) shifts the radial mode near 2 kHz due to this severe damping. Instability
areas are also altered and the rolling element harmonics appear more clearly on the lower frequency band.
3.4. Unbalanced rotor

The level of the unbalanced force has been taken as 5% of Fr. Response plots have been generated for the
rigid and flexible ring cases as shown in Fig. 12. Aside from the new fundamental at X ¼ 75Hz ensuing from
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the unbalanced rotor, the BPF peak frequencies and harmonics are found to be similar to those previously
obtained, although they are modulated by the rotor speed.

In turbomachinery, the inter-shaft bearings can operate with a counter-rotating motion with important
unbalanced forces on each of the rings. Fig. 13 shows the studied roller bearing with an outer ring rotating at
20,000 rev/min (Z ¼ 233Hz). Here the radial static force Fr is set to 1500 daN, the inner unbalanced force to 2

3

of Fr and the outer unbalanced force to 1
3
of Fr. These unbalanced forces become predominant for the response

of the inner ring, since the principal harmonics are function of the rings’ speeds. The BPF is no longer visible
and a strong harmonic at cage speed (Y ¼ 150Hz) appears to underline the influence of the static load.
3.5. Cage material

Two cage materials are investigated: steel and carbon fiber reinforced Peek (polyetheretherketones). Peek is
a thermoplastic which offers a significant gain on cage weight (almost 20% for this bearing) with excellent
mechanical properties. The small inertia of Peek cages is useful to reduce the impact loads between the roller
and the retainer. However it may lead to some cage instabilities. Figs. 14–17 highlight the effects of the
retainer material on cage position, for rigid (left) or flexible (right) rings, with balanced and severely
unbalanced rotors (80% of Fr).
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Fig. 16. Steel cage position at 4500 rev/min for Fr ¼ 15; 000N—unbalanced rotor.
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Fig. 17. Peek cage position at 4500 rev/min for F r ¼ 15; 000N—unbalanced rotor.
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With a balanced rotor (cf. Figs. 14 and 15), steel and Peek cages exhibit almost the same response when the
deformation of the rings is taken into account.

Their improved stability when a flexible ring is considered could be due to an increase in the clearance
between the cage and the inner guiding land, which is hydrodynamically lubricated. When the rings are
assumed to be rigid, the influence of the radial load is stronger, especially for the Peek cage since the first four
harmonics of ðX � Y Þ appear for the vertical displacement in Fig. 15. Similarly, for an unbalanced rotor, see
Figs. 16 and 17, it is observed that flexible rings have only a small effect on the cage position in comparison to
rigid rings, for both steel and Peek cage materials. However, it should be underlined that the effect of the cage
inertia is easy to identify: the first frequency harmonics (below X ) observed in Fig. 13 are 2 or 3 times lower for
a steel cage than those observed with a Peek cage (Fig. 17).

4. Conclusion

An unitary mathematical model is proposed to describe the dynamic behavior of a cylindrical roller bearing
with flexible rings. Taking into account the flexibility of the rings leads to a smoother global response of the
rotor-bearing assembly with less cage instabilities. Consequently, this assumption is a first-order parameter for
predicting the dynamic behavior of the system. It is also found that the ball pass harmonics are significantly
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modified when considering the ring flexibility. The first frequencies are more marked and the higher frequency
is attenuated. Consequently, the inner ring trajectory loses one order of complexity, even with an unbalanced
rotor. An inter-shaft bearing operating in a counter-rotating motion shows a larger number of frequency
components: the unbalanced forces on both rings increase the nonlinearity of the system leading to many sub-
and super-harmonics. These sub- and super-harmonics are found to be a linear combination of the two ring
speeds. Finally, the inertia of the cage material is found to play a role on the cage trajectory.
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